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Darboux transforms, deep reductions and solitons 

S B Leble and N V Ustinov 
Kaliningrad State Universiry, Theoretical Phw.s  Department, Russia. 7.36041, 
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Abstract. Explicit formalisms for deep reductions of matrix differential equations and 
Darboux covariance properties are presented. The matrix 2 x 2  spectral problem of the 
second order is considered. This problem with the reduction constraints being imposed on 
the potentials is the first equation of the Lax representation of the Hirota-Satsuma 
system. The two reduction cases are treated with the help of the bilinear 6-fom. The 
covariance of these forms with respect to the Darboux transforms under restrictions gives 
rise to explicit formulas of N-soliton solutions. In particular the two-parameter soliton 
solutions of the Hirota-Satsuma system are obtained. The specific feature of such 
solutions evolution is that the singularity appears in some parameter region. The 
Yajima-Oikawa system is given as an example of the technique application to a 3 x 3 
spectral problem. 

1. Introduction 

Investigations of matrix spectral problems and nonlinear evolution equations that are 
generated by associated Lax pairs are strongly connected with the problem of 
reduction restrictions on potentials [l]. In the present paper the formalism of deep 
reductions with the Darboux transformation (DT) technique [2] is developed. The 
application to systems of nonlinear evolution equations that appear as a result of 
reduction constraints in a 2 X 2 spectral problem of the second order and compatible 
with the time evolution is presented. 

A special case of this reduction is the Hirota-Satsuma (HS) system that has been 
introduced in [3] where one- and two-soliton solutions have been built within the 
single-parameter family by means of the Hirota method. The Sat0 theory has been 
used to obtain the N-soliton solutions in this one-parameter and the Kdv soliton 
families [4]. For this purpose additional constraints were imposed for solutions of the 
four-reduction of the KP hierarchy to be solutions of the HS system without investigat- 
ing possibilities of other constraints, and hence other solutions of the HS system. 

Lax pairs [4,5] and infinitely many conservation laws [4] were found. BBcklund 
transformation of this system was used in [6] to rederive the simple soliton solution. 
The practical realization of this technique failed to address the higher Backlund 
transformation construction. The ly functions of the associated linear problem and 
their transformation formulas, which are a specific feature of the Darboux approach, 
allow one to overcome these difficulties and obtain factorization in transformation 
formulas in the case of the HS system and in similar systems. 
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The present paper is organized in the following way. Section 2 is devoted to the 
covariance of the above-mentioned spectral problem with respect to the standard DT 
as well as to two elementary DTS that factorize the standard one. The formulas for 
iteration of the DT, and the conditions keeping the reductions defined by two kinds of 
automorphisms are presented. In the third section we introduce the bilinear &-forms 
that impose additional constraints in the spectral problem having both automorphisms 
and give DTS which provide that the new potentials possess the same restrictions. The 
Lax pair, its covariance properties and nonlinear equations are considered and the 
new two-parameter solitons family for the HS system are built in section 4. As a 
representative example the application of this technique to the sonic-Langmuir 
interaction (Yajima-Oikawa) system is given in section 5. 

2. The matrix spectral equation of second order and its Darboux covariance 

Let us introduce the dserential polynomial of second order with spectral parameter A 
and 2 x 2 matrix coefficients 

Vn+FVx+ uV=Ao3V (2.1) 
where a3=diag(l, -1) is the Pauli matrix, $=(vI.Vz)Tand potentials are U=&}, 
F=(f,,f;,=O}, i = l , 2 ,  j=1,2. 

The Matveev theorem [2] deals with the transform of* 

4 = V X  + E* E = -@&-I (2.24 

where @=(@(1),@(2)), @(') and @(') are column solutions of (2.1) with spectral 
parameters p(') and ,d2), @('I= (qj", q$')* (i= 1.2) and states the covariance of (2.1) 
with respect to the DT equation (2.2~) with new (transformed) potentials: 

E = F + U ~ E U ~  - E (2.B) 

4"= (a,+&)aq'"/ap". (2.2c) 

U =  U+ F, - 2 ~ , +  a,&qF- PE. 
The formulas for transformed q(9 are given by the equation 

The Matveev transform itself can be decomposed into two new (elementary) 
transforms [7]. 
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where q=(q1,q2)' is a solution of (2.1) with spectral parameter p. The second 
transform is obtained by means of the indices rearrangement 1-2 and 2-1. 

The transforms commute and their product yields the standard Darboux transfor- 
mation equation (2.2). 

The iterations of the DT given by (2.2) give rise to the following formulas for 
transformed wavefunction and potentials 

= * ; , N ~ + E ! ~ - ' ) * I ~ , ( N - I ) ~ + & ~ ~ - ~ ) * z ( N - ~ ) ~ +  . . ' +E$))I/Ii+E& 

i =  1,2 ( 2 . 3 ~ )  

fn[W = fi2- 2 & p  fii[q =f21-2Ek?-') (2.36) 

Cll[w = UI1 - 2&\yi1) 4- 2&f-')&~y-') -f12E$Y-') --fZ1&$;-') (2.3~) 

C12[w= ~ ~ , + N f ~ ~ , ~ - 2 E ~ ~ ~ ~ ) - 2 E ~ ~ - ~ ) + f ~ ~ ( & ~ ~ - ~ ' - & ~ ~ ' ) )  +2&$--"&g-') (2.3d) 

(2.3e) = u21 + Nfl,,- &$:;') - 2&.$-') f fa(&&-" - E\?-')) + 2&g-')&g-') 
Cu[N = h2- 2&g,;') 4- 2&$-1)E$y-1) -fiz&$'-l) -f21&$:-') (2.3fl 
where q"= (q$J', ~ 9 ' ) ~  are solutions of (2.1) with the spectral parameters p'", 
respectively ( j =  1 ,2 ,  . . . .2N); A[N] is the determinant of the 2NX 2N matrix which 
are obtained from the (2N+ 1) x (2N+ 1) matrix to be written in the numerator of 
( 2 . 3 ~ )  by omitting the first row and~colnmn; &ifl are given by expanding the 
determinants and comparing the coefficients of tpj,&(i, j =  1 ,2 , .  . . , N -  1); the 
indices Kx after the comma denote the Kth-order derivative with respect to x .  The 
formulas for transformed # are derived from ( 2 . 3 ~ )  expanding the wavefunction 
components: 

W;(A))= (a-pG))-yVp+ (a-p(1~)aqp/ap('~. . .) 
and taking the l i t  d+,d''. 

Equation (2.2) rewritten for components of the wavefunction coincide with (2.3) 
for N =  1. Carrying out the DT of (2.2) on the wavefunctions C$~" ) [N ]  and $z"2j[Nl 
with the potentials &VI and @VI given by (2.3) one obtains (2.3) with N +  1 instead 
of N ,  after some simple determinant algebra. It is seen that all qG' enter uniformly in 
equations (2.3). 

The existence of different kinds of automorphisms in wavefunction space causes 
special constraints on the potentials. The automorphism *(A) +*(A*)* (the depen- 
dence on x is omitted) takes place when the potentials Uand Fare real. The reduction 
constraints 

fn=f21 =f U]' =&=U u'*=u*l= U (2.4) 
give another automorphism q(L)+o,q(-A) where ut is the Pauli matrix. Both 
automorphisms hold when (f, U, U) E R. The Darboux covariance propeaies for them 
are summarized in the following lemma. 

Lemma 2.2. (i) Let U, F E R .  Then o[w and f lN ]  are also real when the following 
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conditions are imposed on the wavefunctions in equation (2.3): q@”= 9(z-1)*, 
P(2L1= P (2L-1)* (or (q(zL-l), q@”) E Kwhen (p(2L-1),  ,U@‘)) E R), L =  1,2, . . . , N .  

(ii) Let the potentials be of the form (2.4) (i.e. UT= U, FT=F) .  Then u[Nl’= 
O[Nl and flqT= flNl when 

S B Leble and N V Ustinov 

(2.5) p(2L) = - (2L-1). p= ,&2L-1) P 
The formulas for transformed potentials are 

ilN] =f- b i N - 1 )  ( 2 . 6 ~ )  

ri[N] =U-2&II”;”+z(&i”-I)-n&i”-l) (2.66) 

qrJ1 = v + Nfx - 2 E y y  - 24”-2’ + z & p ) & y - 1 )  (2 .6~ )  

where &IL) =E!?) = &), siL) = ti$) = &). 
(iii) Let (f, U, U )  ER.  Then the conditions (2.5) added to the conditions: q(2L+1)= 

p - l ) *  P@L+l) ,  P N.-l)* (or ~ J ( ~ ~ - ” E I W  when p@L-l)eR or qIZL-I)=qfL-’)* when 
ip(*‘-’)eIW, i = f i )  provide that the transformed potentials possess the same 
reduction ( f [ r J 1 ,  ic[N], e[rJ1)~R. 

The proof is straightforward. 

Remark2.1. In conditions (ii) of the previous lemma for the casef= v = 0 one can put 
qpL-’)= q”-’), qkzL-’)= 0 and obtain the formulas of the iterated classical DT for the 
wavefunctions &[qc(i= 1,2) and the potential ic[N]“. 

3. The bilinear forms and the deep reductions 

In this section we consider equation (2.1) with the potentials given by equation (2.4). 
There are two additional constraints (deep reductions) defined by the corresponding 
bilinear &forms: 

f = O  (3.1) 

w, x) = W l , ~ x l - Y l x l , ~ -  t w z , x x 2 - w 2 ; 1 2 , )  -f(YIX2-YzxJ 
where q = (VI, y2)’, x= (xl, xZ)’ are solutions of (2.1). The &form is independent of 
x iff the appropriate reduction is imposed and the spectral parameters of the 
wavefunctions and x are equal. 

Theorem 3.1. When the potentials are of one of the reductions (3.1) or (3.2), 
equation ( 2 . 3 ~ )  (under the conditions (2.5)) and equations (2.6) constitute the DT 
which reserve this reduction if N = 2 M ,  ~ ( ~ ‘ - ‘ ) = p ( ‘ ~ - ~ )  and ‘orthogonality conditions’ 
are imposed on wavefunctions 

q q ( ‘ L - l ) ,  4 4 L - 3 9 = 0  L = l , .  . . ,M 
(the &forms conform to the reduction constraint). 

The ‘orthogonality conditions’ are then covariant 

,wml, 2[rJ1) =o if S(Y, x) =o. 
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Proof. The case M =  1 is checked by direct calculations. Suppose the theorem holds 
for M > l .  Performing the DT on the theorem for N = 2  on the wavefunctions q?4Mca 
[ZM], i = l ,  . . . , 4  with proper constraints for the reduction cases (3.1) or (3.2) one 
obtains that the transformed potentials possess the reduction. On the other hand, the 
formulas obtained by this method are just those for the DT with (M+ 1) instead of M 
due to the covariance of the ‘orthogonality conditions’. 

For real potentials U, U and f the reality of transformed ones is achieved as in the 
previous section. 

Remnrk3.1. S($[Nc, x [ N l c ) = O  if S($J,,y)=O. 

4. The Lax pair and solitons of nonlinear equations 

The spectral problem equation (2.1) can be considered as the first equation of the Lax 
pair. Choosing the second one in the form 

$Jc= $J% +B$Jx + C* (4.1) 
where 

B=+diag U+$Fx+#FF? 

C =  +Ux -3 diag U, -%fizu21 +h1ulz)~+$(fi~.& -fifil,,)s 

+$(uii- u22b3F 
one arrives at the compatibility conditions 

F,- Fk+ Bk - 3LIk + 2Cx + FB, - o~Bu, F,S LIB - u ~ B u ~ U +  FC 

- u ~ C U ~  F= 0 (4.2a) 

U,- U,, + r&+ uc- U&U+ FC, - o,BuJ,7, = 0.  (4.2b) 

The automorphisms $J(A)+*(A*)* and $J(A)+u1?)(-A) exist in the space of the 
solutions of the Lax pair. In the latter case the compatibility conditions (4.2) are 

(4.3) 

Moreover equations (4.3) allow both kinds of deep reduction presented in section 3 
(i.e. they are compatible with time evolution). The former reduction cf=O) gives rise 
to the HS system and the latter (U =L/Z) leads to the coupled Kdv-mdv system. 

The Lax pair (2.1) and (4.1) and consequently the compatibility conditions are in 
possession of the same Darboux covariance properties as (2.1) itself. Equations (2.3) 
constitute the iterated DTS where qo’ are the solutions of this Lax pair. Both kinds of 
automorphisms being admissible with the Lax pair, Lemma 2.2 is valid. The classical 
DTS for the Kdv equation $[w and Li[w are also obtained. The bilinear &forms are 
independent of Y and t when the spectral parameters of the Lax pair solutions entering 
in the &form are equal and the appropriate constraints are imposed on the potentials. 
Because of this Theorem 3.1 holds and gives the DTS for the Lax pair (2.1) and (4.1) 
and its compatibility conditions under the deep reduction constraints. 
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This way we are able to construct different kinds of solutions. The real potentials 
can be built by the DTS of Theorem 3.1 when M = l ;  ,U(’) is purely imaginary and 
~p(~)= q~(l)(’)* (or pi1) = pi1)* and pi4)= 91i4)*). Beginning from the zero background 
f = U = U =O(qC)‘ are the sum of the exponents) and imposing the relevant constraints 
on the wavefunctions (i.e. 6(1p@), q@)) =0) produces a two-parameter one-soliton 
solution of the HS system: 

u=2ln,A ~=(2+2d2)~’~&/A (4.4) 

A=cosh(pp~-&~Zt) +dcos(fip~++p:f) 

or a two-parameter solution for the coupled K d v - m d v  system: 

f = 2(2 + 2d2)’”AJA2 U =  f /2 +21n,A 

where ,U(’)= i&/2, po and the configuration parameter d are real constants. For small 
Id1 this solution is a smooth function. However, when Idl>l poles appear and the 
number of poles increases with Idl. When M = 2  the real six-parameter soliton 
solutions are obtained puttingp(5)=p(1)* (Rep(‘)#O) and I$?=P)(~)*. Alternatively, if 
p(I) and p@ (p(’)#p(g) are purely imaginary the two-soliton solution of the two- 
parameter family is produced. The interaction does not change the configuration 
parameters and only changes the relative location and phase shifts. 

One can perform DTS for deep reductions not only on zero background but on any 
solution of the K d v  equation. Remark 3.1 is useful in the construction of solutions 
which describe the interaction of the Kdv and deep reduction (e.g. HS system) solitons. 

Setting d= 0 in (4.4) one obtains the .well known single-parameter soliton of the NS 
system. While this solution is obtained from the two-soliton solution in the Sat0 
theory, the two-parameter soliton is extracted from the four-soliton solution (from the 
eight-soliton one for the six-parameter solution) by means of more complicated 
constraints than given in [4]. However, we have not succeeded in proving general 
formulas which contain the K d v ,  one- and two- (or six-) parameter soliton solutions for 
both deep reductions in the framework of the Sato theory. This is a matter of further 
study. 

5. The Yajima-Oikawa system 

In this section we briefly consider the Lax pair which includes the Zakharov-Shabat 
spectral problem of the third order 

* x + J - J * = w  (5.1) 

and the linear evolution equation of the form 

(5.2) 
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where 1/, = (q,, q2, q3)= i s  a solution of the Lax pair with the spectral parameter A, 
J=diag(l,O, -l), A=diag(i,O,i), 

u={uii, uii=o} 

0 -U12 0 
B=i  1-7 l2 yi 

(5.3) 

i -uuU21 UY,, + u13u32 U1243 

-%,.,+uuh U I Z ~ ~ + U + ~  - U ~ , ~ + U Q I ~ ~  

U3241 u32,x+ u1241  -%3u32 

The compatibility condition of equations (5.1) and (5.2) is 
U,= c, +cu- uc. 

There are at least two reduction constraints on the potential U (presented below) 

The bilinear 6-form 
which are admissible with time evolution. 

6(Y,x)=~lx3+~2xz*-1-*3xr 
on the solutions q and x of equations (5.1) and (5.2) with spectral parameters 1 and Al 
is independent of both n and twhen 1, =A* and the following constraints are imposed 

% = - U : 2  %,,=-U$ Ul3 + U73 = 0 %,+u:,=o. (5.4) 

u2, =U, = 0 U,, = i (5.5) 

The reduction constraints 

lead to the symmetry property: iE 1/) = ( - i (~@~,~-Aq~) ,  q2, y3)= is the solution with 
spectral parameter 1, then X=(-i(~3.,+AyJ3)r q2, q3) is the solution with spectral 
parameter (-A). 

The product of these constraints (deep reduction) are also admissible with time 
evolution. 'The compatibility condition turns then into the Yajima-Oikawa (YO) 
system [SI: 

U , ~ , , = ~ U U , ~ + ~ ~ Z U I ~  (5.6a) 

%3,1= -2i(l~1212)x- (5.6b) 

Equations (5.1) and (5.2) with these reductions are written in terms of components q2 
q3 only. The first is * 2.1 =-U* 121/)3 (5.7a) 

1/13,,= A 2 q 3  + iu131/13 + iu121/12. ( 5 3 )  
The Lax pair and hence the compatibility condition are covariant with respect to 

$ =1* + EyJ E = -pAp-' (5.8a) 

U= U +  JE - EJ (5.8b) 

where the matrix p is p = (q?('), rp('), p")), @= (&, p$?, pg')T (i= 1,2,3) are the 
solutions of (5.1) and (5.2) with spectral parameters p'", ~=diag{p") ,~(2) ,~(3)}.  

the DT [2]: 
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Similarly to section 2 one arrives at determinant formulas rewriting (5.8) for the 
components of the wavefunction V ,  The N-times iteration of this DT leads to 
cumbersome formulas in the determinants of the orders (3N+1)  and 3N which 
include different wavefunctions q(" (i= 1,2, . . . ,3N)  in a uniform manner. 

Let the potential U possesses the reduction constraints (5.4). Imposing the 
conditions ,uP)=/ .~(~)=f l (~)* ,  6(p('), p") =6(q"), qe))=O provides that the trans- 
formed potential f! satisfies the same reduction. Then equations (5.8) take the form 

S B Leble and N V Ustinov 

(5.94 

(5.9b) 

(5.9c) 

where q=q('),@=p('), Ss(v, q)= S(V, q)/(L-p*), di= - q i / d s ( q ,  q), i= 1,2,3. The 
'orthogonality conditions' for &forms are covariant: S($[l], 51])=0 if 6(Q, x) = O .  

Equations (5.9) constitute the DT for (5.1), (5.2) and (5.3) under the reduction 
(5.4). The iterations of this DT give 

I 1 v i  6 Y v , 4 9  . . . 6'(1v, 4N)) I 

= qi + d"6'(p, PE)) i=1,2,3 (5. loa) 

a12[N] =ulz+ dY)qF)* ~&'1=%2-d3 U) 9)z ( j )*  (5.10b) 

G,,[N] =uI3+2df)q?* t&[N] = %l-2dt7q:)* (5.10c) 

where A [ N ]  =det{Ss(q@, @)}; p(') (i= 1,2,. . . .N)  are the solutions with the spec- 
tral parameters @('' of equations (5.1) and (5.2) (we use the symbol q(" as in (5.8) for 
simplicity, but here any constraints are not yet imposed on them); d!j) are defined by 
expansion of the determinants; summation over repeated indices in (5.10) is assumed. 
The 'orthogonality conditions' covariance holds: 6 ( q [ N ] ,  $VI) = 0 if 6(V, x)  =O. 

The Equation (5.10) are a specialization of the N-times iteration of (5.8). The 
complete sets of 'orthogonal' wavefunctions (in the sense of the &forms) being used, 
the final formulas (5.10) do not depend on them. That (5.10) are the DT for the 
reduction is also proved by direct substitution in the Lax pair. 

Let both reduction constraints be imposed on the potential U. Putting N=2M and 

@("+I)=- @ 0 q'"'"=(-i(q~~~,4@'), qp, qp)= (5.11) 

(i.e. q ( 0  and q('+O are connected by the symmetry property) one obtains that the DTS 
given by (5.10) with the additional conditions (5.11) maintain the reduction con- 
straints of (5.4) and (5 .5 ) .  

Since equations (5.10) are the iteration formulas it is sufficient to check this 
statement for M =  1 and to prove the 'heredity theorem': @[Z] and 521 are connected 
by the symmetry property if I) and x are connected. 
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(5.12a) 

(5.12b) 

(5.12c) 

yr A(V,q(')) - .  . A(*> d')) 
q$l) A(q('), @(I)) . . . A(q('), @cM)) 

qsM) A(q("), q(l)) . . . A(q("), q'"')) 

: 

~ ( ~ ( ~ ) , ~ " ) = ( ~ ~ ? ~ ~ y ) * -  ( i )  (I)*+ j 9 g ) q ~ ) ) / o l ( i ) ~ - ~ u ) * z ) ,  
v)3  9 3 . x  

The final formulas are proved immediately. 
Performing the DT of (5.12) for M =  1 with the wavefunction q(') the solution of the 

Lax pair (5.1) and (5.2) on the zero background (ul2=uU=O but U,, =i), gives the 
four-parameter solitons which are singular except for  the^ two-parameter (velocity and 
frequency) soliton solutions [SI. 

6. Conclusion 

In this paper we have presented a method of constructing solutions for the reductions 
of nonlinear evolution equations. New soliton solutions have been revealed for the 
Hirota-Satsuma and coupled KdV-MKdV systems. Although the collapsing states are 
known the noteworthy feature of these new solutions is the dependence on the free 
parameter. 

The technique suggested here can be extended to other deep reductions of the 
Mikhailov type [l] (e.g. the Boullough-Dodd-Zhiber-Shabat equation). Other kinds 
of deep reductions including the Maxwell-Bloch equation, complex MKW, 
Sawada-Kotera, Kaup-Kupershmidt equations can also be treated, with some 
modifications. The reduction constraints define the symmetry properties in wavefunc- 
tion space which turns out to be useful in extracting the proper potentials form the 
general formulas of the Darboux transformations. 

We hope that results concerning these equations will be published elsewhere. 
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